Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 17 de 17
Фильтр
1.
Acta Epileptologica ; 4(1):1-10, 2022.
Статья в английский | ProQuest Central | ID: covidwho-20244479

Реферат

BackgroundThis study was aimed to investigate whether patients with epilepsy (PWE) have higher depression and anxiety levels than the normal population in low-risk areas for coronavirus disease 2019 (COVID-19) in the northern part of Guizhou Province, China, during the COVID-19 epidemic, to evaluate their knowledge on COVID-19, and to analyze related factors for the psychological distress of PWE at this special time.MethodsThe survey was conducted online from February 28, 2020 to March 7, 2020 via a questionnaire. PWE from the outpatient clinic of epilepsy of the Affiliated Hospital of Zunyi Medical University, and healthy people matched for age and sex, participated in this study. Mental health was assessed via a generalized anxiety self-rating scale (GAD-7) and the self-rating depression scale (PHQ-9). The knowledge of COVID-19 in both groups was investigated.ResultsThere were no significant differences in the general demographics between the PWE and healthy control groups. The scores of PHQ-9 (P < 0.01) and GAD-7 (P < 0.001) were higher in the PWE group than in the healthy group. There was a significant difference in the proportions of respondents with different severities of depression and anxiety, between the two groups, which revealed significantly higher degree of depression and anxiety in PWE than in healthy people (P = 0, P = 0). Overwhelming awareness and stressful concerns for the pandemic and female patients with epilepsy were key factors that affect the level of anxiety and depression in PWE. Further, the PWE had less accurate knowledge of COVID-19 than healthy people (P < 0.001). There was no statistically significant difference between the two groups in the knowledge of virus transmission route, incubation period, susceptible population, transmission speed, clinical characteristics, and isolation measures on COVID-19 (P > 0.05). PWE knew less about some of the prevention and control measures of COVID-19 than healthy people.ConclusionsDuring the COVID-19 epidemic, excessive attention to the epidemic and the female sex are factors associated with anxiety and depression in PWE, even in low-risk areas.

2.
Signal Transduct Target Ther ; 8(1): 149, 2023 04 07.
Статья в английский | MEDLINE | ID: covidwho-2305506

Реферат

Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.


Тема - темы
Communicable Diseases , Orthomyxoviridae , Viral Vaccines , Animals , Humans , Viral Vaccines/genetics , Viral Vaccines/therapeutic use , Genetic Vectors , Orthomyxoviridae/genetics , Adenoviridae/genetics
3.
Virol Sin ; 38(2): 244-256, 2023 Apr.
Статья в английский | MEDLINE | ID: covidwho-2288504

Реферат

Many studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various animals and transmit among animals, and even to humans, posing a threat to humans and animals. There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019 (COVID-19) in animals. Rabies virus (RABV) is another important zoonotic pathogen that infects almost all warm-blooded animals and poses a great public health threat. The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice, cats and dogs. The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice. Notably, inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1, which was maintained at high levels for longer periods. Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs, with a relatively broad-spectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha, Beta, Gamma, Delta, and Omicron, showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.


Тема - темы
COVID-19 , Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Cats , Dogs , Rabies virus/genetics , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunity, Cellular , Spike Glycoprotein, Coronavirus
4.
Front Immunol ; 14: 1066730, 2023.
Статья в английский | MEDLINE | ID: covidwho-2268658

Реферат

The emergence of SARS-CoV-2 variants stresses the continued need for broad-spectrum therapeutic antibodies. Several therapeutic monoclonal antibodies or cocktails have been introduced for clinical use. However, unremitting emerging SARS-CoV-2 variants showed reduced neutralizing efficacy by vaccine induced polyclonal antibodies or therapeutic monoclonal antibodies. In our study, polyclonal antibodies and F(ab')2 fragments with strong affinity produced after equine immunization with RBD proteins produced strong affinity. Notably, specific equine IgG and F(ab')2 have broad and high neutralizing activity against parental virus, all SARS-CoV-2 variants of concern (VOCs), including B.1.1,7, B.1.351, B.1.617.2, P.1, B.1.1.529 and BA.2, and all variants of interest (VOIs) including B.1.429, P.2, B.1.525, P.3, B.1.526, B.1.617.1, C.37 and B.1.621. Although some variants weaken the neutralizing ability of equine IgG and F(ab')2 fragments, they still exhibited superior neutralization ability against mutants compared to some reported monoclonal antibodies. Furthermore, we tested the pre-exposure and post-exposure protective efficacy of the equine immunoglobulin IgG and F(ab')2 fragments in lethal mouse and susceptible golden hamster models. Equine immunoglobulin IgG and F(ab')2 fragments effectively neutralized SARS-CoV-2 in vitro, fully protected BALB/c mice from the lethal challenge, and reduced golden hamster's lung pathological change. Therefore, equine pAbs are an adequate, broad coverage, affordable and scalable potential clinical immunotherapy for COVID-19, particularly for SARS-CoV-2 VOCs or VOIs.


Тема - темы
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Horses , Humans , Mice , Rodentia , Mesocricetus , Antibodies, Monoclonal , Broadly Neutralizing Antibodies , Immunoglobulin G , Mice, Inbred BALB C
5.
Microorganisms ; 11(2)2023 Feb 08.
Статья в английский | MEDLINE | ID: covidwho-2230868

Реферат

The frequent emergence of SARS-CoV-2 variants thwarts the prophylactic and therapeutic countermeasures confronting COVID-19. Among them, the Delta variant attracts widespread attention due to its high pathogenicity and fatality rate compared with other variants. However, with the emergence of new variants, studies on Delta variants have been gradually weakened and ignored. In this study, a replication-competent recombinant virus carrying the S protein of the SARS-CoV-2 Delta variant was established based on the vesicular stomatitis virus (VSV), which presented a safe alternative model for studying the Delta variant. The recombinant virus showed a replication advantage in Vero E6 cells, and the viral titers reach 107.3 TCID50/mL at 36 h post-inoculation. In the VSV-vectored recombinant platform, the spike proteins of the Delta variant mediated higher fusion activity and syncytium formation than the wild-type strain. Notably, the recombinant virus was avirulent in BALB/c mice, Syrian hamsters, 3-day ICR suckling mice, and IFNAR/GR-/- mice. It induced protective neutralizing antibodies in rodents, and protected the Syrian hamsters against the SARS-CoV-2 Delta variant infection. Meanwhile, the eGFP reporter of recombinant virus enabled the visual assay of neutralizing antibodies. Therefore, the recombinant virus could be a safe and convenient surrogate tool for authentic SARS-CoV-2. This efficient and reliable model has significant potential for research on viral-host interactions, epidemiological investigation of serum-neutralizing antibodies, and vaccine development.

6.
Front Cell Infect Microbiol ; 12: 979641, 2022.
Статья в английский | MEDLINE | ID: covidwho-2141709

Реферат

We evaluated the immunogenicity and protective ability of a chimpanzee replication-deficient adenovirus vectored COVID-19 vaccine (BV-AdCoV-1) expressing a stabilized pre-fusion SARS-CoV-2 spike glycoprotein in golden Syrian hamsters. Intranasal administration of BV-AdCoV-1 elicited strong humoral and cellular immunity in the animals. Furthermore, vaccination prevented weight loss, reduced SARS-CoV-2 infectious virus titers in the lungs as well as lung pathology and provided protection against SARS-CoV-2 live challenge. In addition, there was no vaccine-induced enhanced disease nor immunopathological exacerbation in BV-AdCoV-1-vaccinated animals. Furthermore, the vaccine induced cross-neutralizing antibody responses against the ancestral strain and the B.1.617.2, Omicron(BA.1), Omicron(BA.2.75) and Omicron(BA.4/5) variants of concern. These results demonstrate that BV-AdCoV-1 is potentially a promising candidate vaccine to prevent SARS-CoV-2 infection, and to curtail pandemic spread in humans.


Тема - темы
COVID-19 , Viral Vaccines , Cricetinae , Animals , Humans , Mesocricetus , Administration, Intranasal , Pan troglodytes , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , SARS-CoV-2/genetics , Adenoviridae/genetics
7.
Frontiers in molecular biosciences ; 9, 2022.
Статья в английский | EuropePMC | ID: covidwho-2084301

Реферат

COVID-19 has become an unprecedented threat to human health. The SARS-CoV-2 envelope (E) protein plays a critical role in the viral maturation process and pathogenesis. Despite intensive investigation, its structure in physiological conditions remains mysterious: no high-resolution full-length structure is available and only an NMR structure of the transmembrane (TM) region has been determined. Here, we present a refined E protein structure, using molecular dynamics (MD) simulations to investigate its structure and dynamics in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer system. Our initial homology model based upon the SARS-CoV E protein structure is shown to be unstable in the lipid bilayer, and the H3 helices tend to move away from the membrane center to the membrane-water interface. A more stable model was developed by replacing all H3 helices with the fully equilibrated H3 structure sampled in the MD simulations. This refined model exhibited more favorable contacts with lipids and water than the original homology model and induced local membrane curvature, decreasing local lipid order. Interestingly, the pore radius profiles showed that the channel in both homology and refined models remained in a closed state throughout the simulations. We also demonstrated the utility of this structure to develop anti-SARS-CoV-2 drugs by docking a library of FDA-approved, investigational, and experimental drugs to the refined E protein structure, identifying 20 potential channel blockers. This highlights the power of MD simulations to refine low-resolution structures of membrane proteins in a native-like membrane environment, shedding light on the structural features of the E protein and providing a platform for the development of novel antiviral treatments.

8.
Sustainability ; 14(15):9588, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1994189

Реферат

Urban passenger transport is one of the most significant sources of fossil energy consumption and greenhouse gas emission, especially in developing countries. The rapid growth of urban transport makes it a critical target for carbon reduction. This paper establishes a method for calculating carbon emission from urban passenger transport including ground buses, private cars, cruising taxis, online-hailing taxis, and rail transit. The scope of the study is determined according to the transportation mode and energy type, and the carbon emission factor of each energy source is also determined according to the local energy structure, etc. Taking into consideration the development trend of new energy vehicles, a combination of “top-down” and “bottom-up” approaches is used to estimate the carbon dioxide emission of each transportation mode. The results reveal that carbon emission from Qingdao’s passenger transport in 2020 was 8.15 million tons, of which 84.31% came from private cars, while the share of private cars of total travel was only 45.66%. Ground buses are the most efficient mode of transport. Fossil fuels emit more greenhouse gases than other clean energy sources. The emission intensity of hydrogen fuel cell buses is better than that of other fuel type vehicles. Battery electric buses have the largest sensitivity coefficient, therefore the carbon emission reduction potentially achieved by developing battery electric buses is most significant.

9.
Front Microbiol ; 13: 896965, 2022.
Статья в английский | MEDLINE | ID: covidwho-1969043

Реферат

The pandemic of coronavirus disease 2019 (COVID-19) has emerged as a major public health challenge worldwide. A comprehensive understanding of clinical characteristics and immune responses in asymptomatic carriers and symptomatic patients with COVID-19 is of great significance to the countermeasures of patients with COVID-19. Herein, we described the clinical information and laboratory findings of 43 individuals from Hunan Province, China, including 13 asymptomatic carriers and 10 symptomatic patients with COVID-19, as well as 20 healthy controls in the period from 25 January to 18 May 2020. The serum samples of these individuals were analyzed to measure the cytokine responses, receptor-binding domain (RBD), and nucleocapsid (N) protein-specific antibody titers, as well as SARS-CoV-2 neutralizing antibodies (nAbs). For cytokines, significantly higher Th1 cytokines including IL-2, IL-8, IL-12p70, IFN-γ, and TNF-α, as well as Th2 cytokines including IL-10 and IL-13 were observed in symptomatic patients compared with asymptomatic carriers. Compared with symptomatic patients, higher N-specific IgG4/IgG1 ratio and RBD-specific/N-specific IgG1 ratio were observed in asymptomatic carriers. Comparable nAbs were detected in both asymptomatic carriers and symptomatic patients with COVID-19. In the symptomatic group, nAbs in patients with underlying diseases were weaker than those of patients without underlying diseases. Our retrospective study will enrich and verify the clinical characteristics and serology diversities in asymptomatic carriers and symptomatic patients with COVID-19.

10.
Viruses ; 14(6)2022 05 24.
Статья в английский | MEDLINE | ID: covidwho-1911605

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the prime challenge facing public health safety since 2019. Correspondingly, coronavirus disease 2019 (COVID-19) vaccines have been developed and administered worldwide, varying in design strategies, delivery routes, immunogenicity and protective efficacy. Here, a replication-competent vesicular stomatitis virus (VSV) vectored recombinant COVID-19 vaccine was constructed and evaluated in BALB/c mice and Syrian golden hamsters. In BALB/c mice, intramuscular (i.m.) inoculation of recombinant vaccine induced significantly higher humoral immune response than that of the intranasal (i.n.) inoculation group. Analyses of cellular immunity revealed that a Th1-biased cellular immune response was induced in i.n. inoculation group while both Th1 and Th2 T cells were activated in i.m. inoculation group. In golden hamsters, i.n. inoculation of the recombinant vaccine triggered robust humoral immune response and conferred prominent protective efficacy post-SARS-CoV-2 challenge, indicating a better protective immunity in the i.n. inoculation group than that of the i.m. inoculation group. This study provides an effective i.n.-delivered recombinant COVID-19 vaccine candidate and elucidates a route-dependent manner of this vaccine candidate in two most frequently applied small animal models. Moreover, the golden hamster is presented as an economical and convenient small animal model that precisely reflects the immune response and protective efficacy induced by replication-competent COVID-19 vaccine candidates in other SARS-CoV-2 susceptible animals and human beings, especially in the exploration of i.n. immunization.


Тема - темы
COVID-19 , Vesicular Stomatitis , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Immunity , Mice , Mice, Inbred BALB C , Rodentia , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , Vesicular stomatitis Indiana virus/genetics , Vesiculovirus/genetics
11.
Frontiers in microbiology ; 13, 2022.
Статья в английский | EuropePMC | ID: covidwho-1887955

Реферат

The pandemic of coronavirus disease 2019 (COVID-19) has emerged as a major public health challenge worldwide. A comprehensive understanding of clinical characteristics and immune responses in asymptomatic carriers and symptomatic patients with COVID-19 is of great significance to the countermeasures of patients with COVID-19. Herein, we described the clinical information and laboratory findings of 43 individuals from Hunan Province, China, including 13 asymptomatic carriers and 10 symptomatic patients with COVID-19, as well as 20 healthy controls in the period from 25 January to 18 May 2020. The serum samples of these individuals were analyzed to measure the cytokine responses, receptor-binding domain (RBD), and nucleocapsid (N) protein-specific antibody titers, as well as SARS-CoV-2 neutralizing antibodies (nAbs). For cytokines, significantly higher Th1 cytokines including IL-2, IL-8, IL-12p70, IFN-γ, and TNF-α, as well as Th2 cytokines including IL-10 and IL-13 were observed in symptomatic patients compared with asymptomatic carriers. Compared with symptomatic patients, higher N-specific IgG4/IgG1 ratio and RBD-specific/N-specific IgG1 ratio were observed in asymptomatic carriers. Comparable nAbs were detected in both asymptomatic carriers and symptomatic patients with COVID-19. In the symptomatic group, nAbs in patients with underlying diseases were weaker than those of patients without underlying diseases. Our retrospective study will enrich and verify the clinical characteristics and serology diversities in asymptomatic carriers and symptomatic patients with COVID-19.

12.
Huan Jing Ke Xue ; 43(6): 2840-2850, 2022 Jun 08.
Статья в Китайский | MEDLINE | ID: covidwho-1876195

Реферат

The COVID-19 lockdown was a typical occurrence of extreme emission reduction, which presented an opportunity to study the influence of control measures on particulate matter. Observations were conducted from January 16 to 31, 2020 using online observation instruments to investigate the characteristics of PM2.5 concentration, particle size distribution, chemical composition, source, and transport before (January 16-23, 2020) and during (January 24-31, 2020) the COVID-19 lockdown in Zhengzhou. The results showed that the atmospheric PM2.5 concentration decreased by 4.8% during the control period compared with that before the control in Zhengzhou. The particle size distribution characteristics indicated that there was a significant decrease in the mass concentration and number concentration of particles in the size range of 0.06 to 1.6 µm during the control period. The chemical composition characteristics of PM2.5 showed that secondary inorganic ions (sulfate, nitrate, and ammonium) were the dominant component of PM2.5, and the significant increase in PM2.5 was mainly owing to the decrease in NO3- concentration during the control period. The main sources of PM2.5 identified by the positive matrix factorization (PMF) model were secondary sources, combustion sources, vehicle sources, industrial sources, and dust sources. The emissions from vehicle sources, industrial sources, and dust sources decreased significantly during the control period. The results of analyses using the backward trajectory method and potential source contribution factor method indicated that the effects of transport from surrounding areas on PM2.5 concentration decreased during the control period. In summary, vehicle and industrial sources should be continuously controlled, and regional combined prevention and control should be strengthened in the future in Zhengzhou.


Тема - темы
Air Pollutants , COVID-19 , Air Pollutants/analysis , COVID-19/epidemiology , COVID-19/prevention & control , China , Communicable Disease Control , Dust/analysis , Environmental Monitoring/methods , Humans , Particle Size , Particulate Matter/analysis , Vehicle Emissions/analysis
13.
Viruses ; 14(6):1127, 2022.
Статья в английский | MDPI | ID: covidwho-1857857

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the prime challenge facing public health safety since 2019. Correspondingly, coronavirus disease 2019 (COVID-19) vaccines have been developed and administered worldwide, varying in design strategies, delivery routes, immunogenicity and protective efficacy. Here, a replication-competent vesicular stomatitis virus (VSV) vectored recombinant COVID-19 vaccine was constructed and evaluated in BALB/c mice and Syrian golden hamsters. In BALB/c mice, intramuscular (i.m.) inoculation of recombinant vaccine induced significantly higher humoral immune response than that of the intranasal (i.n.) inoculation group. Analyses of cellular immunity revealed that a Th1-biased cellular immune response was induced in i.n. inoculation group while both Th1 and Th2 T cells were activated in i.m. inoculation group. In golden hamsters, i.n. inoculation of the recombinant vaccine triggered robust humoral immune response and conferred prominent protective efficacy post-SARS-CoV-2 challenge, indicating a better protective immunity in the i.n. inoculation group than that of the i.m. inoculation group. This study provides an effective i.n.-delivered recombinant COVID-19 vaccine candidate and elucidates a route-dependent manner of this vaccine candidate in two most frequently applied small animal models. Moreover, the golden hamster is presented as an economical and convenient small animal model that precisely reflects the immune response and protective efficacy induced by replication-competent COVID-19 vaccine candidates in other SARS-CoV-2 susceptible animals and human beings, especially in the exploration of i.n. immunization.

14.
Acta Epileptologica ; 4(1), 2022.
Статья в английский | EuropePMC | ID: covidwho-1837919

Реферат

Background This study was aimed to investigate whether patients with epilepsy (PWE) have higher depression and anxiety levels than the normal population in low-risk areas for coronavirus disease 2019 (COVID-19) in the northern part of Guizhou Province, China, during the COVID-19 epidemic, to evaluate their knowledge on COVID-19, and to analyze related factors for the psychological distress of PWE at this special time. Methods The survey was conducted online from February 28, 2020 to March 7, 2020 via a questionnaire. PWE from the outpatient clinic of epilepsy of the Affiliated Hospital of Zunyi Medical University, and healthy people matched for age and sex, participated in this study. Mental health was assessed via a generalized anxiety self-rating scale (GAD-7) and the self-rating depression scale (PHQ-9). The knowledge of COVID-19 in both groups was investigated. Results There were no significant differences in the general demographics between the PWE and healthy control groups. The scores of PHQ-9 (P < 0.01) and GAD-7 (P < 0.001) were higher in the PWE group than in the healthy group. There was a significant difference in the proportions of respondents with different severities of depression and anxiety, between the two groups, which revealed significantly higher degree of depression and anxiety in PWE than in healthy people (P = 0, P = 0). Overwhelming awareness and stressful concerns for the pandemic and female patients with epilepsy were key factors that affect the level of anxiety and depression in PWE. Further, the PWE had less accurate knowledge of COVID-19 than healthy people (P < 0.001). There was no statistically significant difference between the two groups in the knowledge of virus transmission route, incubation period, susceptible population, transmission speed, clinical characteristics, and isolation measures on COVID-19 (P > 0.05). PWE knew less about some of the prevention and control measures of COVID-19 than healthy people. Conclusions During the COVID-19 epidemic, excessive attention to the epidemic and the female sex are factors associated with anxiety and depression in PWE, even in low-risk areas.

15.
Frontiers in immunology ; 13, 2022.
Статья в английский | EuropePMC | ID: covidwho-1695128

Реферат

New emerging severe acute respiratory syndrome 2 (SARS-CoV-2) has caused a worldwide pandemic. Several animal models of coronavirus disease 2019 (COVID-19) have been developed and applied to antiviral research. In this study, two lethal mouse-adapted SARS-CoV-2 variants (BMA8 and C57MA14) with different virulence were generated from different hosts, which are characterized by high viral replication titers in the upper and lower respiratory tract, pulmonary pathology, cytokine storm, cellular tropism, lymphopenia, and neutrophilia. Two variants exhibit host genetics-related and age-dependent morbidity and mortality in mice, exquisitely reflecting the clinical manifestation of asymptomatic, moderate, and severe COVID-19 patients. Notably, both variants equally weaken the neutralization capacity of the serum derived from COVID-19 convalescent, but the C57MA14 variant showed a much higher virulence than the BMA8 variant in vitro. Q489H substitution in the receptor-binding domain (RBD) of BMA8 and C57MA14 variants results in the receptors of SARS-CoV-2 switching from human angiotensin-converting enzyme 2 (hACE2) to murine angiotensin-converting enzyme 2 (mACE2). Additionally, A22D and A36V mutation in E protein were first reported in our study, which potentially contributed to the virulence difference between the two variants. Of note, the protective efficacy of the novel bacterium-like particle (BLP) vaccine candidate was validated using the BMA8- or C57MA14-infected aged mouse model. The BMA8 variant- and C57MA14 variant-infected models provide a relatively inexpensive and accessible evaluation platform for assessing the efficacy of vaccines and novel therapeutic approaches. This will promote further research in the transmissibility and pathogenicity mechanisms of SARS-CoV-2.

16.
Vaccines (Basel) ; 9(10)2021 Sep 26.
Статья в английский | MEDLINE | ID: covidwho-1438764

Реферат

The worldwide pandemic of coronavirus disease 2019 (COVID-19) has become an unprecedented challenge to global public health. With the intensification of the COVID-19 epidemic, the development of vaccines and therapeutic drugs against the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also widespread. To prove the effectiveness and safety of these preventive vaccines and therapeutic drugs, available animal models that faithfully recapitulate clinical hallmarks of COVID-19 are urgently needed. Currently, animal models including mice, golden hamsters, ferrets, nonhuman primates, and other susceptible animals have been involved in the study of COVID-19. Moreover, 117 vaccine candidates have entered clinical trials after the primary evaluation in animal models, of which inactivated vaccines, subunit vaccines, virus-vectored vaccines, and messenger ribonucleic acid (mRNA) vaccines are promising vaccine candidates. In this review, we summarize the landscape of animal models for COVID-19 vaccine evaluation and advanced vaccines with an efficacy range from about 50% to more than 95%. In addition, we point out future directions for COVID-19 animal models and vaccine development, aiming at providing valuable information and accelerating the breakthroughs confronting SARS-CoV-2.

17.
Child Youth Serv Rev ; 124: 105960, 2021 May.
Статья в английский | MEDLINE | ID: covidwho-1103784

Реферат

Objective: To explore the intervention effect of aerobic exercise in combination with acceptance and commitment therapy on mental health of adolescents during the outbreak of COVID-19 based on the theory of the dual-factor model of mental health. Methodology: 1200 adolescents aged 12-19 in Fujian Province, China were screened by means of the dual-factor model of mental health from March to April 2020. 30 vulnerable, 30 symptomatic but contented and 30 distressed adolescents were selected as the experiment objects, and these 3 types of adolescents were randomly divided into the intervention group and the control group. Among them, the intervention group received 8 weeks of aerobic exercise in combination with acceptance and commitment therapy, 3 times a week, about 40-60 min each time. The control group, however, didn't receive any intervention other than routine mental health education. Measurements were made before and after the intervention. Results: (1) For vulnerable, symptomatic but contented and distressed individuals, before the intervention, there is no significant difference between the intervention group and the control group in terms of psychological distress, well-being and psychological flexibility (P > 0.05). After the intervention, psychological distress and experiential avoidance is significantly lower in the intervention group than in the control group, but all dimensions of well-being is significantly higher in the intervention group than in the control group (P < 0.05). (2) For vulnerable, symptomatic but contented and distressed individuals, before and after the intervention, there are significant differences in psychological distress, well-being and psychological flexibility of the intervention group (P < 0.05), but there are no significant differences in the control group (P > 0.05). Conclusion: Attention should be paid to the problems of mental health of adolescents caused by the sudden outbreak of public health incidents. Aerobic exercise in combination with acceptance and commitment therapy is feasible and effective for the intervention in mental health of adolescents.

Критерии поиска